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Abstract. The structure of single-particle levels in the second minima of 237,239,241Pu was analyzed with
the help of an axially-deformed Woods-Saxon potential. The nuclear shape was parametrized in terms of
the cassinian ovaloids. A parametrization of the spin-orbit part of the potential was obtained in the region
corresponding to large deformations (second minimum), depending only on the nuclear surface area. With
this parametrization, we were able to reproduce successfully the spin, parity and energies of the rotational
band built on the 8µs isomeric state in 239Pu and, also, a spin assignment for both isomeric states in 237Pu
and 241Pu was carried out.

PACS. 25.85.-W Fission reactions – 25.70.Gh Compound nucleus – 21.60.-n Nuclear-structure models
and methods – 21.60.Cs Shell model

1 Introduction

The theoretical description of the fission process is one
of the oldest and most challenging problems in nuclear
physics. Although many aspects of the fission process have
already been clarified, a consistent description of fission
has not yet been found [1]. The difficulty resides in the fact
that the fission process involves both collective aspects
and single-particle effects superimposed on a macroscopic
background.

Different aspects of fission-like properties, such as
asymmetric mass division and fission isomers, are believed
to be associated with single-particle effects in the vicinity
and even beyond the fission saddle point. Therefore, a suc-
cessful description of these phenomena depends strongly
on accurate calculations of single-particle states for very
deformed shapes near and beyond the saddle point.

Previous studies on single-particle states in the second
well have made use, generally, of methods appropriate to
small deformations and, then, extended to larger defor-
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mations. For instance, Dudek and collaborators [2] have
carried out a systematic work on the optimization of the
Woods-Saxon potential parameters for deformed A ≥ 100
nuclei, using a shape parametrization in terms of spherical
harmonics (details in [2] and references therein). In these
works, the properties of an average spin-orbit field, using
both phenomenological and microscopic approches, were
examined.

In general, such methods suffer from the following
drawbacks: on one hand, the parametrization used to de-
scribe the geometrical shape of the potential and equipo-
tential surfaces are inappropriate at larger deformations
and, on the other hand, higher order deformation param-
eters are needed in the multipole expansions. In this work
we use another and more convenient approach to calcu-
late single-particle states for strongly deformed nuclear
shapes. In this approach the nuclear shape parametriza-
tion is carried out by using a coordinate system based
upon Cassini ovaloids, as proposed by Pashkevich [3,4].
This shape parametrization requires only a few parame-
ters to describe a whole variety of realistic shapes in de-
formed nuclei (up to and beyond its separation into two
fragments). In this sense, this parametrization may be
considered better than the expansion in terms of spher-
ical harmonics, extensively used in the literature.
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If one is interested in the quantitative description of
the properties of the fission isomeric states (known as
the best superdeformed states [5]), it is necessary to pay
special attention to the parametrization of the spin-orbit
part of the deformed nuclear potential. Therefore, a good
parametrization of the spin-orbit part of the potential,
which is mostly responsible for the order of single-particle
levels, is extremely important in the analysis of the proper-
ties of single-particle levels at deformations corresponding
to the second minima of the total energy surfaces of fis-
sioning nuclei. In this regard, Dudek and collaborators [6]
carried out shell model calculations, in which the parame-
ters of the deformed Woods-Saxon potential were adjusted
in order to reproduce the shape properties of some known
isomeric states. They showed that the parametrization of
the spin-orbit potential, at fission isomeric minima, should
be significantly different from the parametrization applied
to the ground states, resulting, thus, in a deformation-
dependent parametrization of the strength (λ) and radius
(ro−so) parameters. The main features of this parametriza-
tion of the spin-orbit potential for fission isomeric states
consist of both increasing the effective strength of spin-
orbit potential and reducing its radius parameters ro−so.
Similar results were also obtained by Hamamoto and Ogle.
In all these works, however, the particular dependence of
the spin-orbital potential parameters on deformation was
restricted to the parametrization. Moreover, the spheri-
cal shape parametrization used in these works is not the
most convenient, because it requires an expansion with
several terms to describe a deformed shape. However, the
study of the dependence of the spin-orbit term with defor-
mation, could be performed by using the nuclear surface
area Bs. In this case, the results are applicable for any
parametrization.

The identification of single-particle orbitals in the sec-
ond minimum is of paramount importance because it
would test the basic model assumptions, especially if one
could demonstrate that the right levels are used to cal-
culate the shell correction. Concerning fission isomeric
states, extensive theoretical and experimental efforts have
been done to study the properties of these states, but up to
now the spin and/or parity of most of the fission isomers
still remain unknown. Nevertheless, some measurements
of spin–parity for the second minimum in 236,238U and
240Pu have been performed [7,8]. Therefore, the study of
spectroscopic properties of isomeric states would be a per-
fect testing ground for the single-particle model at large
deformations, as proposed in this work. 239Pu is a particu-
larly interesting nucleus to study because, among odd-Pu
isotopes, it is the only nucleus in which a rotational band
built on an isomeric state was identified [9]. 237Pu and
241Pu also have two isomeric states but, differently from
the 239Pu case, their spin and parities are not known. Ac-
tually, only the spin (parity unknown) of the energetically
lower isomer (8 µs) of 239Pu is known [9]. The spin and
parity of the energetically higher isomer (2.6 ns) remain
unknown. In the case of 237Pu, several attempts to do an
assignment to these states were carried out, as reported in
the literature, but this is still an open issue. Both experi-

ment and theory agree with the fact that the ground-state
isomeric level (or the short lived isomer - 122 ns) is ex-
pected to have lower spin compared to the excited isomeric
level (or the long lived isomer - 1.1 µs), which may have
higher spin. For 241Pu, no spin and/or parity assignment
has been done so far.

As far as 237Pu is concerned we note that Dudek et al.
[6] have calculated the g-factors of the I=1/2, K=1/2 and
I=3/2, K=1/2 members of the K=1/2 rotational band,
and compared them with the experimental g-factor (g=-
0.45) [10]. According to their results, the most likely inter-
pretation of the single-particle structure and the Iπ values
of fission isomers in 237Pu is:
a) for the 122 ns isomer, I=3/2, K=1/2− is a member
of the K=1/2 rotational band; and b) for the 1.1 µs,
I=K=11/2, π=−1. Finally, for the energetically higher iso-
mer (2.6 ns) in 239Pu the most likely interpretation would
lead to I=11/2+ or I=11/2−. The work of Dudek et al.
seems to have contributed to clarify the situation concern-
ing the assignment of spin and parity of 237Pu and 239Pu
isomeric states but, as stressed by the authors, these as-
signments should be treated with some caution.

Due to these above mentioned facts, the goals of this
work are:(1) to obtain an optimized set of parameters for
the spin-orbit part of the axially deformed Woods-Saxon
potential, which would be able to describe the experimen-
tal ground-state properties of Pu isotopes (spin, parity and
the energy spacing of single-particle levels of the equilib-
rium deformation); this could be achieved by using a more
convenient shape parametrization based upon the Cassini
ovaloids. (2) To obtain an analytical expression for the
strength parameter λ and the radius parameter ro−so, as
a function of the nuclear surface area Bs. With the help of
this expression, we aim to make a parametrization of the
Woods-Saxon potential corresponding to the deformation
region of the second minima of some Pu isotopes. With
this parametrization it would be possible reproduce the
first rotational band built on the 8µs isomeric state of
239Pu, as well as to do spin and parity assignment for the
two isomeric states of 237Pu and 241Pu.

It is important to note that this new parametrization
for λ and ro−so differs from that of Dudek et al. [6] in two
aspects:(a) λ and ro−so are given as a function of the nu-
clear surface area Bs, and not of the deformation param-
eters β2 and β4; and (b) we use a more convenient shape
parametrization to describe a deformed nucleus, which is
based on Cassini ovaloids.

2 Method of calculation

2.1 Nuclear shape parametrization

Our nuclear shape parametrization is carried out by us-
ing the BARRIER code developed by Garcia et al. [11].
According to this code, the deformed shape (up to and
beyond its separation into two fragments) can be con-
veniently described by the Cassini ovaloids proposed by
Pashkevich, as shown in detail elsewhere [3,12].
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Considering only axially symmetric nuclear shapes, the
Cassini ovaloids are taken as the first approximation to
the nuclear shape. The deviation from the ovaloid shape
is given by an expansion into a series of Legendre poly-
nomials. Geometrically, the family of Cassini ovaloids is
defined by [13]:

r2(z, ε) =
√

(a4 + 4(cz)2)− (c2 + z2 − ε2). (1)

In this equation, r and z are cylindrical coordinates; ε is
a dimensionless quantity such that c=εR2

0; c stands for
the square distance from the focus of the Cassini ovaloids
to the origin of coordinates; and a is a dimensionless pa-
rameter which completely defines the shape, taking into
account volume conservation.

In the plane containing the symmetry axis it is defined
a system of coordinates (R, x), such that the coordinate
line R is constant. This is a Cassini ovaloid where 0 ≤ R <
∞ and −1 ≤ x ≤ 1. The (R, x) coordinates are related to
the cylindrical ones (r, z) by the following equations

R(z, r) = 4

√
[(z2 + r2)2 − 2εR2

0 · (z2 − r2) + ε2R2
0], (2)

x(z, r) =
sign(z)√

2

[
1 +

z2 − r2 − εR2
0

R2(z, r)

] 1
2

. (3)

In this system of coordinates, the basic shape of the
nucleus is described by these equations, whith R constant,
determining thus the Cassini ovaloids. Therefore, the nu-
clear shape can be defined as a curve R(x) that does not
intersect any straight line x = constant in more than one
point. Then, we expand the function R(x) into multipoles,

R(x) = R0[1 +
∑

βmYm0(x)]. (4)

Therefore, the set of parameters (ε, β) determines the
nuclear shape.. The details of this parametrization are
given in [3,13]. As an example, we show in Fig. 1 (ε, α4)
as a function of (β2, β4). As clearly seem in this figure, it
is difficult to establish an analytical connection between
the two set of parameters. A relation was obtained by a
least–square fit of the parameters β2, β4 to the shapes de-
scribed in this work by the cassinian ovaloids. By using
this figure it is possible to establish a connection between
the two set of parameters to describe the same nuclear
shape, but for more complex shapes more coeficients are
needed in the harmonic spherical expansion.

It is worth mentioning that the shortcoming associated
with spherical expansion, at large deformations, refers to
the inclusion of non-small terms to describe extreme nu-
clear shapes. In our approach, however, we can avoid this
problem by using the parameter ε, which is one of the pa-
rameters of the ovaloid basis figures, subsequently used in
the expansion given by (4).

2.2 Nuclear potential

In order to obtain single–particle energies and wave func-
tions, the Hamiltonian has to be diagonalized. The Hamil-
tonian matrix elements are calculated with the wave func-
tions of a deformed axially symmetric oscillator potential.

The basis cut-off energy is determined in such a way that
negative energy eigenvalues of the Woods–Saxon potential
don’t change by the addition of more harmonic oscillator
shells.

2.2.1 The axially-deformed Woods-Saxon potential

The real potential V (r) is expected to follow approxi-
mately the density distribution, as usual. One of the most
used radial dependences comes from the Woods–Saxon po-
tential, which takes into account the nuclear potential and
the density distribution. This potential involves the pa-
rameters V0, r0 and a, describing the depth of the central
potential, the radius and the diffuseness parameters, re-
spectively.

The nuclear potential is given by

V (r, z, ε, β̂) =
Vo

1 + exp
dist(r,z,ε,β̂)

a

, (5)

where dist(r,z,ε,β̂) is the distance between a point and the
nuclear surface, and ε and β̂ are deformation parameters.

The depth of the central potential is parametrized as

V = V0[1± κ(N − Z)/(N + Z)], (6)

with the plus sign for protons and the minus sign for neu-
trons. The value of the constant κ is equal to 0.63.

2.2.2 The spin-orbit potential

The spin–orbit coupling is by necessity a surface term
since, in a region of constant density, the only direction
with local significance is that of the particle motion and,
thus, it is impossible to define a pseudovector that can be
coupled to the nuclear spin. If the range of the force is
small compared with the distance over which the nuclear
density changes appreciably, the rapid density variation
in the region of the nuclear surfaces implies that Vso may
have a somewhat different radial dependence. However,
since the main effect is still concentrated near the surface,
it has be found sufficient to employ a spin–orbit potential
in the simple form

Vso(r, z, ε, β̂) = λ

(
h

2Mc

)2

∇V (r, z, ε, β̂) · (σ × p), (7)

where λ denotes the strength of the spin–orbit potential
and M is the nucleon mass. The vector-operator σ stands
for Pauli matrices and p is the linear momentum operator.
This definition reduces to the familiar form at spherical
shapes; it uses the most general scalar expression com-
posed of the gradient of the potential, spin and linear mo-
mentum containing only the first power of p.

2.2.3 The Coulomb potential

The Coulomb potential is assumed to be that correspond-
ing to the nuclear charge (Z − 1)e, and uniformly dis-
tributed inside the nucleus. It is computed in cylindrical
coordinates by using the expression given in [3].
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2.3 Static magnetic moments

The calculation of static magnetic moments was per-
formed in the same way proposed in [6]. For odd-A nuclei
the valence particles contribute significantly to the mag-
netic moment, as given by the approximate expression

µI,K = gRI +
gk−gR
(I + 1)

[
K2 +

1
4

(2I + 1)(−1)I+1/2bδk,1/2

]
,

(8)
where the magnetic decoupling parameter b is expressed
by

b (gk − gR)

=
{〈

K =
1
2
|[(gl − gR) l+ + (gs − gR) s+]|K =

1
2

〉}
(9)

The single-particle structure enters into the above re-
lations via single-particle |K = 1

2 〉 wave functions for K=1
2

bands, but also via g-factors gK which, for one quasipar-
ticle excitation, are given by

gK =
1
K
〈K |(gllz + gssz)|K〉 . (10)

The effective g-factor gR, for the rotational motion,
can be analyzed from the data set for K=0 bands of even
nuclei; the resulting estimate gives gR ' Z/A.

The intrinsic spin g factors gs are calculated by

gs = 0.7gs,free,

where gs,free = 5.58 and -3.82 for protons and neutrons,
respectively.

2.4 Nuclear deformation

The first step to start the optimization of the potential
parameters is to fix the appropriate value of the equilib-
rium deformation of the nucleus. In the shell model ap-
proach, based on mean-field potentials, this is achieved
in most of the practical applications using the Strutin-
sky method [14]. In this work, the extremal points were
calculated with the BARRIER code [11], which includes
the Strutinsky method with the Pashkevich parametriza-
tion for the nuclear shape. In our calculations, the pairing
energy was evaluated accordingly to the commonly used
prescriptions of the BCS approach, including blocking ef-
fect [15].

The expression for the surface area Bs in the Pashke-
vich parametrization is

Bs =
1
2
R−2

0

∫
r

[
1 +

(
∂r

∂z

)2
] 1

2

dz, (11)

or,

Bs =
1

2
√

2
R−2

0 c−2

∫ 1

−1

dxR
[
p−R2

(
2x2 − 1

)
− s
] 1

2

×
[
R2 +

(
1− x2

)(dR
dx

)2
] 1

2 (
1− x2

)− 1
2 p−

1
2 , (12)

where p =
[
R4 + 2εR2

0

(
2x2 − 1

)
+ ε2R4

0

] 1
2 , s = εR2

0, and

c =
( 4

3R
3
0∫

r2dz

) 1
3
.

One of our goals is to obtain a relationship between
some intrinsic parameters of the Woods-Saxon potential
(such as λ and ro−so) as a function of Bs, which is defined
as the ratio of the nuclear surface area, calculated for the
experimental equilibrium deformation (β2, β4), to the sur-
face area of a sphere with the same volume. Therefore, it is
very important to check the reliability of the deformation
parameters obtained in our calculations; this is done by
comparing them with available experimental results and
other theoretical calculations.

The extraction of the deformation parameters from
the experimental data is, in many cases, uncertain (spe-
cially for β4) and, depending on the reaction, these val-
ues can be quite different. For instance, deformations ob-
tained with Coulomb scattering are usually greater than
those extracted from nuclear reaction data. This is prob-
ably due to the different mechanisms of these processes,
but some additional errors could be attributed to the fact
that the interpretation of the experimental data depends,
to a certain extent, on theoretical models, and partially to
differences between the geometrical parameters employed
in optical model calculations.

The deformation parameters (ε,α4) obtained from our
calculations were converted into another set of deforma-
tions (β2, β4) and, then, compared with the experimen-
tal results of Bemis et al. [16] and with theoretical re-
sults of Gareev et al. [17]. Bemis et al. carried out precise
Coulomb-excitation experiments from 4He inelastic scat-
tering in even-A nuclei, through the range of the actinides
deformed region. In their work, the model-dependent de-
formation parameters, β20 and β40, were extracted from
the measured E2 and E4 transition moments for a dis-
tribution of nuclear charges represented by a deformed
Fermi distribution, and by a deformed homogeneous dis-
tribution.

It could be appraised in Fig. 2 the agreement be-
tween our calculations, using the proposed spin–orbit
parametrization, with the sistematics obtained from the
works mentioned above. Also included are calculations
performed for nuclei in the vicinity of those studied in this
work, in order to stress the effectiveness of this method to
search for equilibrium deformations in these nuclei. So,
the (ε, α4) parameters correspond to the ground state de-
formations for these nuclei. The (β2, β4) parameters, cor-
responding to the ground state, were determined by their
connection with (ε, α4) (Fig. 1). In this sense, the (ε, α4)
parameters must be varied to obtain the second minimum
of deformation.

3 Results and discussion

From one of the earliest parametrizations available in the
literature [14], Dudek et al. ([6] and references therein)
worked out corrections for the parameters of the deformed
Woods-Saxon potential, in order to improve the agreement
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Fig. 1. Parameters (ε, α4) as a function of
(β2, β4)

Fig. 2. Calculated pa-
rameters (β2, β4) as a
function of the atomic
mass, compared with the
experimental results of
Bemis et al. [16] and Ga-
reeev et al. [17]
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Table 1. Deformation parameters

Deformation Isotopes
237Pu 239Pu 241Pu

First ε 0.225 0.237 0.225
Minimum α4 0.07 0.065 0.065

Second ε 0.510 0.505 0.500
Minimum α4 0.015 0.025 -0.005

with experimental data on sequences of spins and pari-
ties of odd-nuclei. Earlier parametrizations were usually
obtained by fitting the set of parameters to the available
experimental data on spherical nuclei, specially 208Pb [18–
20].

By using the above mentioned method, deformations
corresponding to the second minimum could be obtained.
In Table 1 we show the deformation parameters for the
ground state and the second minimum of 237,239,241Pu.
The parameters used as starting values were taken from
Chepurnov [20]. This nuclear potential reproduces satis-
factorily the general features of single-particle excitations,
including the experimental separation energy of pairs.

For the ground state deformation of these nuclei, small
changes on λ and r0−so are introduced in order to repro-
duce adequately the spin–parity of the levels sequence.
Using single particle states obtained by this procedure,
the quasiparticle states can be calculated for the first
minimum region, providing spin, parity, energy and level
spacing for the ground and some low–lying states. The
quasiparticle spectrum was obtained by using the semi-
microscopic method [21]. In order to reproduce the level
spacing at neutron resonance energies, this method uses
the quantum statistical model proposed by Decowski et al
[22], which takes into account shell and pairing effects cal-
culated in the framework of the BCS model. It is used in
this method a consistent form of nuclear structure descrip-
tion and study, wich encompasses energies as low as those
of the discrete levels, and up to 10 MeV where description
by means of level densities is necessary. For these higher
energies, experimental data from neutron resonances are
employed - see details in [21]. Therefore, we obtain a set of
parameters which describes rather well the ground states.
In Fig. 3 are shown the fitting results of the experimen-
tal band heads of the first minimum, for 237,239,241Pu, as
well as of the second minimum for 239Pu, using the model
developed in this work. An adequate spectrum descrip-
tion is achieved for all the cases. This is quite promissing,
since it would allow the extrapolation of this methodol-
ogy to the super- and hyperdeformation regions, where no
experimental information is available. This set of parame-
ters is shown in Table 2; λ and ro−so for 239Pu are sligthly
different from those of 237Pu and 241Pu. This is due to an
anomaly in single-particle excitations of 239Pu. Chasman
et al. [23] have shown that the trend of the level spacing,
for a representative set of odd-neutron and odd-proton ac-
tinides, is quite irregular and not as smooth as could be
expected from the shell model and the average nuclear po-
tential. These anomalies in the level spacing may be due

Table 2. Parameters of the nuclear potential for the neutron
system

V0 r0 a λn rso0

First [6] 49.6 1.347 0.7 31.5 1.28
Minimum This work 53.3 1.24 0.63 35.25 1.23

Second [6] 49.6 1.347 0.7 43.1 1.28
Minimum This work 53.3 1.347 0.63 38.25 1.20

to particle-hole interactions [23,24]. It should be stressed
that the goal of this work is not reproducing fine details
of single-particle excitations of Pu nuclei, but only their
general features.

Once an optimized set of parameters is obtained for
each nucleus in the region of the first minimum, the same
procedure is used in the region of the second minimum, in
order to reproduce the experimental information available
for the shape isomers of 237Pu and 239Pu. In the case
of 239Pu, the main information concerning single-particle
structure of the isomers comes from the rotational band
built on a ground state fission isomer [9]. For 237Pu the
main information comes from the measured g-factor (g=-
0.45(3)) of the short–lived fission isomer [10].

It can be observed in Fig. 4 the neutron single–particle
energies obtained near the Fermi level of 239Pu. Also,
other theoretical results available for the same isotope are
shown. The standard sequence is observed in the N=148
sub-shell, as other authors did [25–28]. However, some
small variations in the order and spacing of levels near
the Fermi level were observed. In this case, the experi-
mentally accepted fact that the 145th neutron in Pu239m1

resides in the state with I=5/2, was reproduced in our
calculations. The possible candidates for the fission iso-
mer state are 5

2

+|633〉 and 5
2

+|622〉. However, the high
probability of finding ` antiparallel to the s components,
according to experimental results [9], limits the number
of possible states. The state 5

2

+|622〉 just have the oppo-
site structure, i.e., the component with ` antiparallel to
s, and this does not exceed 20% in our calculation. Only
the state 5

2

+|633〉 have the proper intrinsic structure with
` antiparallel to the s components. In the case of 237Pu,
a level 1

2

−|510〉, close to the Fermi energy, appears as a
likely candidate for the short-lived fission isomer (a similar
result was obtained by Dudek et al [6] ). The experimen-
tal value for the g-factor (g=-0.45) is compatible with the
rotational state (K=1/2, I=3/2), with g=-0.43.

The rotational excitations of 239Pu, identified by con-
version electron spectroscopy [9], are compared in Fig. 3
with our calculations. The rotational bands with spin
5/2+, build on the 2.6 ns isomeric state in 239Pu, were
obtained by using the ”experimental” moment of inertia
of the band, in accordance with the rotational constant
A=3.36 keV found in [9]. These results were partially pub-
lished with the sole purpose to justify the validity of the
theoretical methods used in the interpretation of 239Pu
electrofission and photofission data [29].
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Fig. 3. The experimental band heads [30] of
the first minimum, for 237Pu (a), 239Pu (b)
and 241Pu (c); compared with our theoreti-
cal results. In right-botton (d), the experimen-
tal spectroscopical available information of the
second minimum of 239Pu [9] is compared with
our theoretical calculations

Fig. 4. Neutron single particle level energies
of 239Pu obtained in this work, compared with
other results

With the set of λ and ro−so, for both deformation re-
gions (first and second minima), it was possible to obtain
the dependence of these parameters with the surface area
term Bs. Since the main effect of the spin orbit coupling
is concentrated near the surface, we have tried to obtain
a parametrization for this part of the potential depending
directly on the surface area term Bs, instead of as a func-
tion of the deformation parameters as proposed by Dudek
et al. [6].

In Figs. 5 and 6 we present results for λ and ro−so as
a function of the surface parameter Bs. It is important
to note that our results were normalized to the standard
values given by Chepurnov [20]. The parametrization of
Dudek et al. [6] is also shown in these figures. It is clear
that our parametrization differs from that proposed by
Dudek et al., particularly in the second minimum region.
As an aproximation, we propose an exponential depen-
dence of these parameters with the nuclear surface (see
Fig. 5 and Fig. 6).
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Fig. 5. Parameter λ as a function of the
surface parameter (Bs − 1). Full line: fitting;
dashed line: parametrization of Dudek et al.
[6]

Fig. 6. Parameter ro−so as a function of the
surface parameter (Bs − 1). Full line: fitting;
dashed line: parametrization of Dudek et al.
[6]

At the second minimum region, there are several ex-
perimental works dealing with the fission isomeric state
of 239Pu, while no experimental information is available
for 241Pu. Nevertheless, by using the procedures adopted
in this work, we obtained optimized single particle levels
for 241Pu (Fig. 7). A closer inspection of Fig. 7 reveals a
bunch of states between -8.0 and -7.0 MeV. A large gap be-

fore two relatively close states (5/2,-3/2) shows up. These
two levels are the best candidates for the 241Pu isomeric
state. A huge gap is observed between these levels and
the next pair (5/2,7/2), which indicates that certainly the
(5/2) and (-3/2) states might well be related with the iso-
meric states of this isotope. The parameters λ and r0−so
we obtained agree with the systematics (Figs. 5 and 6).
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Fig. 7. 241Pu single particle levels obtained at
the second minimum region

4 Conclusions

We have obtained a new parametrization for the spin-
orbit interaction using the Woods-Saxon single particle
model. This study was carried out by using the Cassinian
ovaloids for the nuclear shape parametrization, which is
better than the parametrizations based on the spherical
harmonic expansion. Also, we have obtained an exponen-
tial dependence between the parameters characterizing
the spin-orbit interaction and the nuclear surface area. In
this case, the strength of the spin-orbit potential increases
with an increasing nuclear surface area.

With our parametrization, the single–particle struc-
ture of 241Pu was calculated. There are two levels, 5/2+

and 3/2−, which are the best candidates to explain the
fission isomerism in this nucleus. It is important to note
that this parametrization differs from others found in the
literature [6,28], particularly because, in our case, the pa-
rameters are expressed as a function of the nuclear sur-
face area. Nevertheless, there are common characteristics
as e.g. the increase of the strength of the spin–orbit po-
tential.

Moreover, we have proposed a procedure to study the
second minimum region, based not only in the study of
the results of the Woods–Saxon single particle model, but
based also in the study of the quasiparticle spectrum ob-
tained with a BCS model. It is important to note that
the microscopic treatment of the spin–orbit interaction is
not so far well developed. Besides, the spin–orbit splitting
depends on the nucleon–nucleon interaction used in mi-
croscopic calculations. So, it is not possible to compare
our results with microscopic studies for this kind of effect.

Finally, we would like to point out that our approach,
for the use of the Semi–Microscopic Combined Method,
was succesfully employed in the calculation of the transi-
tion nucleus levels at saddle points [29], which allowed the
identification, for the first time, of a concentration of M1

strength in the electro- and photofission of 239Pu near the
fission barrier (details in [30]).
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de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and
Financiadora de Projetos (FINEP), for the partial financial
support to this work. One of us (M.-L. Yoneama) would like
to thank the staff of the Physics Institute of UFRGS (Porto
Alegre) for their kind hospitality during her 3 months stay
there.

References

1. J. Moreau and K, Heyde, ”The Nuclear Fission Process”,
Ed. C. Wagemans, 277 (1991)
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